3.1.6 \(\int \frac {(c i+d i x) (A+B \log (\frac {e (a+b x)}{c+d x}))}{(a g+b g x)^2} \, dx\) [6]

3.1.6.1 Optimal result
3.1.6.2 Mathematica [A] (verified)
3.1.6.3 Rubi [A] (verified)
3.1.6.4 Maple [B] (verified)
3.1.6.5 Fricas [F]
3.1.6.6 Sympy [F(-1)]
3.1.6.7 Maxima [F]
3.1.6.8 Giac [F]
3.1.6.9 Mupad [F(-1)]

3.1.6.1 Optimal result

Integrand size = 38, antiderivative size = 142 \[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=-\frac {B i (c+d x)}{b g^2 (a+b x)}-\frac {i (c+d x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g^2 (a+b x)}-\frac {d i \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right ) \log \left (1-\frac {b (c+d x)}{d (a+b x)}\right )}{b^2 g^2}+\frac {B d i \operatorname {PolyLog}\left (2,\frac {b (c+d x)}{d (a+b x)}\right )}{b^2 g^2} \]

output
-B*i*(d*x+c)/b/g^2/(b*x+a)-i*(d*x+c)*(A+B*ln(e*(b*x+a)/(d*x+c)))/b/g^2/(b* 
x+a)-d*i*(A+B*ln(e*(b*x+a)/(d*x+c)))*ln(1-b*(d*x+c)/d/(b*x+a))/b^2/g^2+B*d 
*i*polylog(2,b*(d*x+c)/d/(b*x+a))/b^2/g^2
 
3.1.6.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.23 \[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\frac {i \left (-2 (A+B) (b c-a d)-B d (a+b x) \log ^2(a+b x)+2 (-b B c+a B d) \log \left (\frac {e (a+b x)}{c+d x}\right )+2 B d (a+b x) \log (c+d x)+2 d (a+b x) \log (a+b x) \left (A-B+B \log \left (\frac {e (a+b x)}{c+d x}\right )+B \log \left (\frac {b (c+d x)}{b c-a d}\right )\right )+2 B d (a+b x) \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{-b c+a d}\right )\right )}{2 b^2 g^2 (a+b x)} \]

input
Integrate[((c*i + d*i*x)*(A + B*Log[(e*(a + b*x))/(c + d*x)]))/(a*g + b*g* 
x)^2,x]
 
output
(i*(-2*(A + B)*(b*c - a*d) - B*d*(a + b*x)*Log[a + b*x]^2 + 2*(-(b*B*c) + 
a*B*d)*Log[(e*(a + b*x))/(c + d*x)] + 2*B*d*(a + b*x)*Log[c + d*x] + 2*d*( 
a + b*x)*Log[a + b*x]*(A - B + B*Log[(e*(a + b*x))/(c + d*x)] + B*Log[(b*( 
c + d*x))/(b*c - a*d)]) + 2*B*d*(a + b*x)*PolyLog[2, (d*(a + b*x))/(-(b*c) 
 + a*d)]))/(2*b^2*g^2*(a + b*x))
 
3.1.6.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.94, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2962, 2780, 2741, 2779, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c i+d i x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{(a g+b g x)^2} \, dx\)

\(\Big \downarrow \) 2962

\(\displaystyle \frac {i \int \frac {(c+d x)^2 \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a+b x)^2 \left (b-\frac {d (a+b x)}{c+d x}\right )}d\frac {a+b x}{c+d x}}{g^2}\)

\(\Big \downarrow \) 2780

\(\displaystyle \frac {i \left (\frac {\int \frac {(c+d x)^2 \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a+b x)^2}d\frac {a+b x}{c+d x}}{b}+\frac {d \int \frac {(c+d x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a+b x) \left (b-\frac {d (a+b x)}{c+d x}\right )}d\frac {a+b x}{c+d x}}{b}\right )}{g^2}\)

\(\Big \downarrow \) 2741

\(\displaystyle \frac {i \left (\frac {d \int \frac {(c+d x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a+b x) \left (b-\frac {d (a+b x)}{c+d x}\right )}d\frac {a+b x}{c+d x}}{b}+\frac {-\frac {(c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-\frac {B (c+d x)}{a+b x}}{b}\right )}{g^2}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {i \left (\frac {d \left (\frac {B \int \frac {(c+d x) \log \left (1-\frac {b (c+d x)}{d (a+b x)}\right )}{a+b x}d\frac {a+b x}{c+d x}}{b}-\frac {\log \left (1-\frac {b (c+d x)}{d (a+b x)}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{b}\right )}{b}+\frac {-\frac {(c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-\frac {B (c+d x)}{a+b x}}{b}\right )}{g^2}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {i \left (\frac {d \left (\frac {B \operatorname {PolyLog}\left (2,\frac {b (c+d x)}{d (a+b x)}\right )}{b}-\frac {\log \left (1-\frac {b (c+d x)}{d (a+b x)}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{b}\right )}{b}+\frac {-\frac {(c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-\frac {B (c+d x)}{a+b x}}{b}\right )}{g^2}\)

input
Int[((c*i + d*i*x)*(A + B*Log[(e*(a + b*x))/(c + d*x)]))/(a*g + b*g*x)^2,x 
]
 
output
(i*((-((B*(c + d*x))/(a + b*x)) - ((c + d*x)*(A + B*Log[(e*(a + b*x))/(c + 
 d*x)]))/(a + b*x))/b + (d*(-(((A + B*Log[(e*(a + b*x))/(c + d*x)])*Log[1 
- (b*(c + d*x))/(d*(a + b*x))])/b) + (B*PolyLog[2, (b*(c + d*x))/(d*(a + b 
*x))])/b))/b))/g^2
 

3.1.6.3.1 Defintions of rubi rules used

rule 2741
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> 
Simp[(d*x)^(m + 1)*((a + b*Log[c*x^n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^( 
m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2780
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.))/((d_) + (e_.)* 
(x_)^(r_.)), x_Symbol] :> Simp[1/d   Int[x^m*(a + b*Log[c*x^n])^p, x], x] - 
 Simp[e/d   Int[(x^(m + r)*(a + b*Log[c*x^n])^p)/(d + e*x^r), x], x] /; Fre 
eQ[{a, b, c, d, e, m, n, r}, x] && IGtQ[p, 0] && IGtQ[r, 0] && ILtQ[m, -1]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 2962
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_ 
)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Sy 
mbol] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q   Subst[Int[x^m*((A + 
 B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; 
 FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && EqQ[n + mn, 0] && IGt 
Q[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && I 
ntegersQ[m, q]
 
3.1.6.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(369\) vs. \(2(142)=284\).

Time = 1.38 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.61

method result size
parts \(\frac {i A \left (\frac {d \ln \left (b x +a \right )}{b^{2}}-\frac {-a d +c b}{b^{2} \left (b x +a \right )}\right )}{g^{2}}-\frac {i B \left (a d -c b \right )^{2} e^{2} \left (-\frac {d^{3} \left (-\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}\right )}{\left (a d -c b \right )^{2} b e}-\frac {d^{4} \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 \left (a d -c b \right )^{2} b^{2} e^{2}}+\frac {d^{5} \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{\left (a d -c b \right )^{2} b^{2} e^{2}}\right )}{g^{2} d^{3}}\) \(370\)
derivativedivides \(-\frac {e \left (a d -c b \right ) \left (-\frac {i \,d^{2} e A \left (-\frac {d \ln \left (b e -\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d \right )}{b^{2} e^{2}}-\frac {1}{b e \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}+\frac {d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{b^{2} e^{2}}\right )}{\left (a d -c b \right ) g^{2}}-\frac {i \,d^{2} e B \left (\frac {d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 b^{2} e^{2}}-\frac {d^{2} \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{b^{2} e^{2}}+\frac {-\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}}{b e}\right )}{\left (a d -c b \right ) g^{2}}\right )}{d^{2}}\) \(448\)
default \(-\frac {e \left (a d -c b \right ) \left (-\frac {i \,d^{2} e A \left (-\frac {d \ln \left (b e -\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d \right )}{b^{2} e^{2}}-\frac {1}{b e \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}+\frac {d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{b^{2} e^{2}}\right )}{\left (a d -c b \right ) g^{2}}-\frac {i \,d^{2} e B \left (\frac {d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 b^{2} e^{2}}-\frac {d^{2} \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{b^{2} e^{2}}+\frac {-\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}}}{b e}\right )}{\left (a d -c b \right ) g^{2}}\right )}{d^{2}}\) \(448\)
risch \(\text {Expression too large to display}\) \(1130\)

input
int((d*i*x+c*i)*(A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2,x,method=_RETURN 
VERBOSE)
 
output
i*A/g^2*(d/b^2*ln(b*x+a)-(-a*d+b*c)/b^2/(b*x+a))-i*B/g^2/d^3*(a*d-b*c)^2*e 
^2*(-1/(a*d-b*c)^2*d^3/b/e*(-1/(b*e/d+(a*d-b*c)*e/d/(d*x+c))*ln(b*e/d+(a*d 
-b*c)*e/d/(d*x+c))-1/(b*e/d+(a*d-b*c)*e/d/(d*x+c)))-1/2/(a*d-b*c)^2*d^4/b^ 
2/e^2*ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))^2+1/(a*d-b*c)^2*d^5/b^2/e^2*(dilog(- 
((b*e/d+(a*d-b*c)*e/d/(d*x+c))*d-b*e)/b/e)/d+ln(b*e/d+(a*d-b*c)*e/d/(d*x+c 
))*ln(-((b*e/d+(a*d-b*c)*e/d/(d*x+c))*d-b*e)/b/e)/d))
 
3.1.6.5 Fricas [F]

\[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\int { \frac {{\left (d i x + c i\right )} {\left (B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A\right )}}{{\left (b g x + a g\right )}^{2}} \,d x } \]

input
integrate((d*i*x+c*i)*(A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2,x, algori 
thm="fricas")
 
output
integral((A*d*i*x + A*c*i + (B*d*i*x + B*c*i)*log((b*e*x + a*e)/(d*x + c)) 
)/(b^2*g^2*x^2 + 2*a*b*g^2*x + a^2*g^2), x)
 
3.1.6.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\text {Timed out} \]

input
integrate((d*i*x+c*i)*(A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)**2,x)
 
output
Timed out
 
3.1.6.7 Maxima [F]

\[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\int { \frac {{\left (d i x + c i\right )} {\left (B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A\right )}}{{\left (b g x + a g\right )}^{2}} \,d x } \]

input
integrate((d*i*x+c*i)*(A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2,x, algori 
thm="maxima")
 
output
-B*d*i*(((b*x + a)*log(b*x + a) + a)*log(d*x + c)/(b^3*g^2*x + a*b^2*g^2) 
- integrate((b^2*d*x^2*log(e) + a^2*d + (b^2*c*log(e) + a*b*d)*x + (2*b^2* 
d*x^2 + a^2*d + (b^2*c + 2*a*b*d)*x)*log(b*x + a))/(b^4*d*g^2*x^3 + a^2*b^ 
2*c*g^2 + (b^4*c*g^2 + 2*a*b^3*d*g^2)*x^2 + (2*a*b^3*c*g^2 + a^2*b^2*d*g^2 
)*x), x)) + A*d*i*(a/(b^3*g^2*x + a*b^2*g^2) + log(b*x + a)/(b^2*g^2)) - B 
*c*i*(log(b*e*x/(d*x + c) + a*e/(d*x + c))/(b^2*g^2*x + a*b*g^2) + 1/(b^2* 
g^2*x + a*b*g^2) + d*log(b*x + a)/((b^2*c - a*b*d)*g^2) - d*log(d*x + c)/( 
(b^2*c - a*b*d)*g^2)) - A*c*i/(b^2*g^2*x + a*b*g^2)
 
3.1.6.8 Giac [F]

\[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\int { \frac {{\left (d i x + c i\right )} {\left (B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A\right )}}{{\left (b g x + a g\right )}^{2}} \,d x } \]

input
integrate((d*i*x+c*i)*(A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2,x, algori 
thm="giac")
 
output
integrate((d*i*x + c*i)*(B*log((b*x + a)*e/(d*x + c)) + A)/(b*g*x + a*g)^2 
, x)
 
3.1.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c i+d i x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a g+b g x)^2} \, dx=\int \frac {\left (c\,i+d\,i\,x\right )\,\left (A+B\,\ln \left (\frac {e\,\left (a+b\,x\right )}{c+d\,x}\right )\right )}{{\left (a\,g+b\,g\,x\right )}^2} \,d x \]

input
int(((c*i + d*i*x)*(A + B*log((e*(a + b*x))/(c + d*x))))/(a*g + b*g*x)^2,x 
)
 
output
int(((c*i + d*i*x)*(A + B*log((e*(a + b*x))/(c + d*x))))/(a*g + b*g*x)^2, 
x)